PGC1α drives NAD biosynthesis linking oxidative metabolism to renal protection

Mei T. Tran, Zsuzsanna K. Zsengeller, Anders H. Berg, Eliyahu V. Khankin, Manoj K. Bhasin, Wondong Kim, Clary B. Clish, Isaac E. Stillman, S. Ananth Karumanchi, Eugene P. Rhee, Samir M. Parikh

Research output: Contribution to journalArticlepeer-review

269 Scopus citations

Abstract

The energetic burden of continuously concentrating solutes against gradients along the tubule may render the kidney especially vulnerable to ischaemia. Acute kidney injury (AKI) affects 3% of all hospitalized patients. Here we show that the mitochondrial biogenesis regulator, PGC1α, is a pivotal determinant of renal recovery from injury by regulating nicotinamide adenine dinucleotide (NAD) biosynthesis. Following renal ischaemia, Pgc1α -/- (also known as Ppargc1a -/-) mice develop local deficiency of the NAD precursor niacinamide (NAM, also known as nicotinamide), marked fat accumulation, and failure to re-establish normal function. Notably, exogenous NAM improves local NAD levels, fat accumulation, and renal function in post-ischaemic Pgc1α -/- mice. Inducible tubular transgenic mice (iNephPGC1α) recapitulate the effects of NAM supplementation, including more local NAD and less fat accumulation with better renal function after ischaemia. PGC1α coordinately upregulates the enzymes that synthesize NAD de novo from amino acids whereas PGC1α deficiency or AKI attenuates the de novo pathway. NAM enhances NAD via the enzyme NAMPT and augments production of the fat breakdown product β-hydroxybutyrate, leading to increased production of prostaglandin PGE 2 (ref. 5), a secreted autacoid that maintains renal function. NAM treatment reverses established ischaemic AKI and also prevented AKI in an unrelated toxic model. Inhibition of β-hydroxybutyrate signalling or prostaglandin production similarly abolishes PGC1α-dependent renoprotection. Given the importance of mitochondrial health in ageing and the function of metabolically active organs, the results implicate NAM and NAD as key effectors for achieving PGC1α-dependent stress resistance.

Original languageEnglish (US)
Pages (from-to)528-532
Number of pages5
JournalNature
Volume531
Issue number7595
DOIs
StatePublished - Mar 24 2016
Externally publishedYes

ASJC Scopus subject areas

  • General

Fingerprint

Dive into the research topics of 'PGC1α drives NAD biosynthesis linking oxidative metabolism to renal protection'. Together they form a unique fingerprint.

Cite this