Phosphatidylinositol 4,5-bisphosphate induces actin stress-fiber formation and inhibits membrane ruffling in CV1 cells

Masaya Yamamoto, Donald H. Hilgemann, Siyi Feng, Haruhiko Bito, Hisamitsu Ishihara, Yoshikazu Shibasaki, Helen L. Yin

Research output: Contribution to journalArticle

100 Scopus citations

Abstract

Phosphatidylinositol 4,5 bisphosphate (PIP2) is widely implicated in cytoskeleton regulation, but the mechanisms by which PIP2 effect cytoskeletal changes are not defined. We used recombinant adenovirus to infect CV1 cells with the mouse type I phosphatidylinositol phosphate 5-kinase α (PIP5KI), and identified the players that modulate the cytoskeleton in response to PIP2 signaling. PIP5KI overexpression increased PIP2 and reduced phosphatidylinositol 4 phosphate (PI4P) levels. It promoted robust stress-fiber formation in CV1 cells and blocked PDGF-induced membrane ruffling and nucleated actin assembly. Y-27632, a Rho-dependent serine/threonine protein kinase (ROCK) inhibitor, blocked stress-fiber formation and inhibited PIP2 and PI4P synthesis in cells. However, Y-27632 had no effect on PIP2 synthesis in lysates, although it inhibited PI4P synthesis. Thus, ROCK may regulate PIP2 synthesis by controlling PI4P availability. PIP5KI overexpression decreased gelsolin, profilin, and capping protein binding to actin and increased that of ezrin. These changes can potentially account for the increased stress fiber and non-ruffling phenotype. Our results establish the physiological role of PIP2 in cytoskeletal regulation, clarify the relation between Rho, ROCK, and PIP2 in the activation of stress-fiber formation, and identify the key players that modulate the actin cytoskeleton in response to PIP2.

Original languageEnglish (US)
Pages (from-to)867-876
Number of pages10
JournalJournal of Cell Biology
Volume152
Issue number5
DOIs
StatePublished - Mar 5 2001

Keywords

  • Gelsolin
  • Phosphatidylinositol 4,5 bisphosphate
  • Phosphatidylinositol phosphate 5-kinase
  • Rho
  • Rho-dependent serine/threonine kinase

ASJC Scopus subject areas

  • Cell Biology

Fingerprint Dive into the research topics of 'Phosphatidylinositol 4,5-bisphosphate induces actin stress-fiber formation and inhibits membrane ruffling in CV1 cells'. Together they form a unique fingerprint.

  • Cite this