PI-3 kinase activity is necessary for ERK1/2-induced disruption of mammary epithelial architecture

Gray W. Pearson, Tony Hunter

Research output: Contribution to journalArticle

12 Citations (Scopus)

Abstract

Introduction: Epithelial tumors, including breast cancer, are being identified and treated at earlier stages of tumor development because of technological advances in screening and detection methods. It is likely that early-stage epithelial tumors, such as mammary ductal carcinoma in situ (DCIS), will be amenable to new and more efficacious diagnostic tests and forms of therapy. However, our limited understanding of the underlying molecular mechanisms of early-stage epithelial tumor growth has hampered the development of new forms treatment and preventative therapy.Methods: The Raf-MEK1/2-ERK1/2 mitogen-activated protein kinase module is activated by stimuli complicit in mammary neoplastic progression. We have recently demonstrated that the activation of ERK1/2 induces a non-invasive form of motility, where cells can track along the basement membrane and adjacent epithelial cells, but do not become invasive over time, using real-time imaging of a mammary epithelial organotypic culture model. Using this novel approach combined with traditional biochemical techniques, we have analyzed at the molecular level how ERK1/2 induces this new non-invasive form of motility as well as proliferation and cell survival.Results: We find that the activation of Raf:ER in the differentiated epithelium of fully formed acini promotes proliferation and cell survival, which are characteristic features of pre-invasive DCIS lesions. The activation of ERK1/2 correlated with induction of c-Fos, a transcriptional regulator of proliferation and reduced expression of the pro-apoptotic BH3-only protein BIM. Both ERK1/2 and PI-3 kinase-dependent effector pathways were required for activated Raf:ER to reduce expression of p27 and promote proliferation. In addition, PI-3K activity was necessary for the induction of non-invasive motility induced by ERK1/2.Conclusions: ERK1/2 activation is sufficient to induce cell behaviors in organotypic culture that could promote recurrent and invasive growth in DCIS patients. Interestingly, PI-3K activity is necessary for two of these behaviors, proliferation and cell motility. Collectively, our results suggest that the relationship between the activity state of the ERK1/2 and PI-3K signaling pathways and recurrent growth in DCIS patients should be investigated.

Original languageEnglish (US)
Article numberR29
JournalBreast Cancer Research
Volume11
Issue number3
DOIs
StatePublished - May 20 2009

Fingerprint

Carcinoma, Intraductal, Noninfiltrating
Phosphatidylinositol 3-Kinases
Breast
Cell Movement
Neoplasms
Cell Survival
Growth
Carcinoma, Ductal, Breast
Mitogen-Activated Protein Kinase 1
Routine Diagnostic Tests
Basement Membrane
Therapeutics
Epithelium
Epithelial Cells
Breast Neoplasms

ASJC Scopus subject areas

  • Cancer Research
  • Oncology
  • Medicine(all)

Cite this

PI-3 kinase activity is necessary for ERK1/2-induced disruption of mammary epithelial architecture. / Pearson, Gray W.; Hunter, Tony.

In: Breast Cancer Research, Vol. 11, No. 3, R29, 20.05.2009.

Research output: Contribution to journalArticle

@article{dac6af9dccfe444cb9d59d97cbf23414,
title = "PI-3 kinase activity is necessary for ERK1/2-induced disruption of mammary epithelial architecture",
abstract = "Introduction: Epithelial tumors, including breast cancer, are being identified and treated at earlier stages of tumor development because of technological advances in screening and detection methods. It is likely that early-stage epithelial tumors, such as mammary ductal carcinoma in situ (DCIS), will be amenable to new and more efficacious diagnostic tests and forms of therapy. However, our limited understanding of the underlying molecular mechanisms of early-stage epithelial tumor growth has hampered the development of new forms treatment and preventative therapy.Methods: The Raf-MEK1/2-ERK1/2 mitogen-activated protein kinase module is activated by stimuli complicit in mammary neoplastic progression. We have recently demonstrated that the activation of ERK1/2 induces a non-invasive form of motility, where cells can track along the basement membrane and adjacent epithelial cells, but do not become invasive over time, using real-time imaging of a mammary epithelial organotypic culture model. Using this novel approach combined with traditional biochemical techniques, we have analyzed at the molecular level how ERK1/2 induces this new non-invasive form of motility as well as proliferation and cell survival.Results: We find that the activation of Raf:ER in the differentiated epithelium of fully formed acini promotes proliferation and cell survival, which are characteristic features of pre-invasive DCIS lesions. The activation of ERK1/2 correlated with induction of c-Fos, a transcriptional regulator of proliferation and reduced expression of the pro-apoptotic BH3-only protein BIM. Both ERK1/2 and PI-3 kinase-dependent effector pathways were required for activated Raf:ER to reduce expression of p27 and promote proliferation. In addition, PI-3K activity was necessary for the induction of non-invasive motility induced by ERK1/2.Conclusions: ERK1/2 activation is sufficient to induce cell behaviors in organotypic culture that could promote recurrent and invasive growth in DCIS patients. Interestingly, PI-3K activity is necessary for two of these behaviors, proliferation and cell motility. Collectively, our results suggest that the relationship between the activity state of the ERK1/2 and PI-3K signaling pathways and recurrent growth in DCIS patients should be investigated.",
author = "Pearson, {Gray W.} and Tony Hunter",
year = "2009",
month = "5",
day = "20",
doi = "10.1186/bcr2259",
language = "English (US)",
volume = "11",
journal = "Breast Cancer Research",
issn = "1465-5411",
publisher = "BioMed Central",
number = "3",

}

TY - JOUR

T1 - PI-3 kinase activity is necessary for ERK1/2-induced disruption of mammary epithelial architecture

AU - Pearson, Gray W.

AU - Hunter, Tony

PY - 2009/5/20

Y1 - 2009/5/20

N2 - Introduction: Epithelial tumors, including breast cancer, are being identified and treated at earlier stages of tumor development because of technological advances in screening and detection methods. It is likely that early-stage epithelial tumors, such as mammary ductal carcinoma in situ (DCIS), will be amenable to new and more efficacious diagnostic tests and forms of therapy. However, our limited understanding of the underlying molecular mechanisms of early-stage epithelial tumor growth has hampered the development of new forms treatment and preventative therapy.Methods: The Raf-MEK1/2-ERK1/2 mitogen-activated protein kinase module is activated by stimuli complicit in mammary neoplastic progression. We have recently demonstrated that the activation of ERK1/2 induces a non-invasive form of motility, where cells can track along the basement membrane and adjacent epithelial cells, but do not become invasive over time, using real-time imaging of a mammary epithelial organotypic culture model. Using this novel approach combined with traditional biochemical techniques, we have analyzed at the molecular level how ERK1/2 induces this new non-invasive form of motility as well as proliferation and cell survival.Results: We find that the activation of Raf:ER in the differentiated epithelium of fully formed acini promotes proliferation and cell survival, which are characteristic features of pre-invasive DCIS lesions. The activation of ERK1/2 correlated with induction of c-Fos, a transcriptional regulator of proliferation and reduced expression of the pro-apoptotic BH3-only protein BIM. Both ERK1/2 and PI-3 kinase-dependent effector pathways were required for activated Raf:ER to reduce expression of p27 and promote proliferation. In addition, PI-3K activity was necessary for the induction of non-invasive motility induced by ERK1/2.Conclusions: ERK1/2 activation is sufficient to induce cell behaviors in organotypic culture that could promote recurrent and invasive growth in DCIS patients. Interestingly, PI-3K activity is necessary for two of these behaviors, proliferation and cell motility. Collectively, our results suggest that the relationship between the activity state of the ERK1/2 and PI-3K signaling pathways and recurrent growth in DCIS patients should be investigated.

AB - Introduction: Epithelial tumors, including breast cancer, are being identified and treated at earlier stages of tumor development because of technological advances in screening and detection methods. It is likely that early-stage epithelial tumors, such as mammary ductal carcinoma in situ (DCIS), will be amenable to new and more efficacious diagnostic tests and forms of therapy. However, our limited understanding of the underlying molecular mechanisms of early-stage epithelial tumor growth has hampered the development of new forms treatment and preventative therapy.Methods: The Raf-MEK1/2-ERK1/2 mitogen-activated protein kinase module is activated by stimuli complicit in mammary neoplastic progression. We have recently demonstrated that the activation of ERK1/2 induces a non-invasive form of motility, where cells can track along the basement membrane and adjacent epithelial cells, but do not become invasive over time, using real-time imaging of a mammary epithelial organotypic culture model. Using this novel approach combined with traditional biochemical techniques, we have analyzed at the molecular level how ERK1/2 induces this new non-invasive form of motility as well as proliferation and cell survival.Results: We find that the activation of Raf:ER in the differentiated epithelium of fully formed acini promotes proliferation and cell survival, which are characteristic features of pre-invasive DCIS lesions. The activation of ERK1/2 correlated with induction of c-Fos, a transcriptional regulator of proliferation and reduced expression of the pro-apoptotic BH3-only protein BIM. Both ERK1/2 and PI-3 kinase-dependent effector pathways were required for activated Raf:ER to reduce expression of p27 and promote proliferation. In addition, PI-3K activity was necessary for the induction of non-invasive motility induced by ERK1/2.Conclusions: ERK1/2 activation is sufficient to induce cell behaviors in organotypic culture that could promote recurrent and invasive growth in DCIS patients. Interestingly, PI-3K activity is necessary for two of these behaviors, proliferation and cell motility. Collectively, our results suggest that the relationship between the activity state of the ERK1/2 and PI-3K signaling pathways and recurrent growth in DCIS patients should be investigated.

UR - http://www.scopus.com/inward/record.url?scp=74049107405&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=74049107405&partnerID=8YFLogxK

U2 - 10.1186/bcr2259

DO - 10.1186/bcr2259

M3 - Article

C2 - 19457236

AN - SCOPUS:74049107405

VL - 11

JO - Breast Cancer Research

JF - Breast Cancer Research

SN - 1465-5411

IS - 3

M1 - R29

ER -