Quantitative Characterization of Viscoelastic Properties of Human Prostate Correlated with Histology

Man Zhang, Priya Nigwekar, Benjamin Castaneda, Kenneth Hoyt, Jean V. Joseph, Anthony di Sant'Agnese, Edward M. Messing, John G. Strang, Deborah J. Rubens, Kevin J. Parker

Research output: Contribution to journalArticlepeer-review

172 Scopus citations

Abstract

Quantification of mechanical properties of human prostate tissue is important for developing sonoelastography for prostate cancer detection. In this study, we characterized the frequency-dependent complex Young's modulus of normal and cancerous prostate tissues in vitro by using stress relaxation testing and viscoelastic tissue modeling methods. After radical prostatectomy, small cylindrical tissue samples were acquired in the posterior region of each prostate. A total of 17 samples from eight human prostates were obtained and tested. Stress relaxation tests on prostate samples produced repeatable results that fit a viscoelastic Kelvin-Voigt fractional derivative (KVFD) model (r2>0.97). For normal (n = 8) and cancerous (n = 9) prostate samples, the average magnitudes of the complex Young's moduli (|E*|) were 15.9 ± 5.9 kPa and 40.4 ± 15.7 kPa at 150 Hz, respectively, giving an elastic contrast of 2.6:1. Nine two-sample t-tests indicated that there are significant differences between stiffness of normal and cancerous prostate tissues in the same gland (p < 0.01). This study contributes to the current limited knowledge on the viscoelastic properties of the human prostate, and the inherent elastic contrast produced by cancer. (E-mail: mazhang@seas.rochester.edu).

Original languageEnglish (US)
Pages (from-to)1033-1042
Number of pages10
JournalUltrasound in Medicine and Biology
Volume34
Issue number7
DOIs
StatePublished - Jul 2008

Keywords

  • Cancer
  • Crawling wave sonoelastography
  • Kelvin-Voigt fractional derivative model
  • Prostate
  • Stress relaxation
  • Viscoelasticity
  • Young's modulus

ASJC Scopus subject areas

  • Radiological and Ultrasound Technology
  • Biophysics
  • Acoustics and Ultrasonics

Fingerprint

Dive into the research topics of 'Quantitative Characterization of Viscoelastic Properties of Human Prostate Correlated with Histology'. Together they form a unique fingerprint.

Cite this