Relationship between x-ray illumination field size and flat field intensity and its impacts on x-ray imaging

Xue Dong, Tianye Niu, Xun Jia, Lei Zhu

Research output: Contribution to journalArticle

19 Citations (Scopus)

Abstract

Purpose: X-ray cone-beam CT (CBCT) is being increasingly used for various clinical applications, while its performance is still hindered by image artifacts. This work investigates a new source of reconstruction error, which is often overlooked in the current CBCT imaging. The authors find that the x-ray flat field intensity (I0) varies significantly as the illumination volume size changes at different collimator settings. A wrong I0 value leads to inaccurate CT numbers of reconstructed images as well as wrong scatter measurements in the CBCT research. Methods: The authors argue that the finite size of x-ray focal spot together with the detector glare effect cause the I0 variation at different illumination sizes. Although the focal spot of commercial x-ray tubes typically has a nominal size of less than 1 mm, the off-focal-spot radiation covers an area of several millimeters on the tungsten target. Due to the large magnification factor from the field collimator to the detector, the penumbra effects of the collimator blades result in different I0 values for different illumination field sizes. Detector glare further increases the variation, since one pencil beam of incident x-ray is scattered into an area of several centimeters on the detector. In this paper, the authors study these two effects by measuring the focal spot distribution with a pinhole assembly and the detector point spread function (PSF) with an edge-spread function method. The authors then derive a formula to estimate the I0 value for different illumination field sizes, using the measured focal spot distribution and the detector PSF. Phantom studies are carried out to investigate the accuracy of scatter measurements and CT images with and without considering the I0 variation effects. Results: On our tabletop system with a Varian Paxscan 4030CB flat-panel detector and a Varian RAD-94 x-ray tube as used on a clinical CBCT system, the focal spot distribution has a measured full-width-at-half-maximum (FWHM) of around 0.4 mm, while non-negligible off-focal-spot radiation is observed at a distance of over 2 mm from the center. The measured detector PSF has an FWHM of 0.510 mm, with a shape close to Gaussian. From these two distributions, the author calculate the estimated I0 values at different collimator settings. The I 0 variation mainly comes from the focal spot effect. The estimation matches well with the measurements at different collimator widths in both horizontal and vertical directions, with an average error of less than 3. Our method improves the accuracy of conventional scatter measurements, where the scatter is measured as the difference between fan-beam and cone-beam projections. On a uniform water cylinder phantom, more accurate I0 suppresses the unfaithful high-frequency signals at the object boundaries of the measured scatter, and the SPR estimation error is reduced from 0.158 to 0.014. The proposed I0 estimation also reduces the reconstruction error from about 20 HU on the Catphan

Original languageEnglish (US)
Pages (from-to)5901-5909
Number of pages9
JournalMedical Physics
Volume39
Issue number10
DOIs
StatePublished - Oct 2012

Fingerprint

Lighting
X-Rays
Cone-Beam Computed Tomography
Glare
Radiation
Tungsten
Artifacts
Research Design
Water
Research

Keywords

  • cone-beam CT
  • flat field intensity
  • x-ray focal spot
  • x-ray scatter

ASJC Scopus subject areas

  • Biophysics
  • Radiology Nuclear Medicine and imaging

Cite this

Relationship between x-ray illumination field size and flat field intensity and its impacts on x-ray imaging. / Dong, Xue; Niu, Tianye; Jia, Xun; Zhu, Lei.

In: Medical Physics, Vol. 39, No. 10, 10.2012, p. 5901-5909.

Research output: Contribution to journalArticle

@article{940fa4aa112e435f9fe7994288dd7878,
title = "Relationship between x-ray illumination field size and flat field intensity and its impacts on x-ray imaging",
abstract = "Purpose: X-ray cone-beam CT (CBCT) is being increasingly used for various clinical applications, while its performance is still hindered by image artifacts. This work investigates a new source of reconstruction error, which is often overlooked in the current CBCT imaging. The authors find that the x-ray flat field intensity (I0) varies significantly as the illumination volume size changes at different collimator settings. A wrong I0 value leads to inaccurate CT numbers of reconstructed images as well as wrong scatter measurements in the CBCT research. Methods: The authors argue that the finite size of x-ray focal spot together with the detector glare effect cause the I0 variation at different illumination sizes. Although the focal spot of commercial x-ray tubes typically has a nominal size of less than 1 mm, the off-focal-spot radiation covers an area of several millimeters on the tungsten target. Due to the large magnification factor from the field collimator to the detector, the penumbra effects of the collimator blades result in different I0 values for different illumination field sizes. Detector glare further increases the variation, since one pencil beam of incident x-ray is scattered into an area of several centimeters on the detector. In this paper, the authors study these two effects by measuring the focal spot distribution with a pinhole assembly and the detector point spread function (PSF) with an edge-spread function method. The authors then derive a formula to estimate the I0 value for different illumination field sizes, using the measured focal spot distribution and the detector PSF. Phantom studies are carried out to investigate the accuracy of scatter measurements and CT images with and without considering the I0 variation effects. Results: On our tabletop system with a Varian Paxscan 4030CB flat-panel detector and a Varian RAD-94 x-ray tube as used on a clinical CBCT system, the focal spot distribution has a measured full-width-at-half-maximum (FWHM) of around 0.4 mm, while non-negligible off-focal-spot radiation is observed at a distance of over 2 mm from the center. The measured detector PSF has an FWHM of 0.510 mm, with a shape close to Gaussian. From these two distributions, the author calculate the estimated I0 values at different collimator settings. The I 0 variation mainly comes from the focal spot effect. The estimation matches well with the measurements at different collimator widths in both horizontal and vertical directions, with an average error of less than 3. Our method improves the accuracy of conventional scatter measurements, where the scatter is measured as the difference between fan-beam and cone-beam projections. On a uniform water cylinder phantom, more accurate I0 suppresses the unfaithful high-frequency signals at the object boundaries of the measured scatter, and the SPR estimation error is reduced from 0.158 to 0.014. The proposed I0 estimation also reduces the reconstruction error from about 20 HU on the Catphan",
keywords = "cone-beam CT, flat field intensity, x-ray focal spot, x-ray scatter",
author = "Xue Dong and Tianye Niu and Xun Jia and Lei Zhu",
year = "2012",
month = "10",
doi = "10.1118/1.4750054",
language = "English (US)",
volume = "39",
pages = "5901--5909",
journal = "Medical Physics",
issn = "0094-2405",
publisher = "AAPM - American Association of Physicists in Medicine",
number = "10",

}

TY - JOUR

T1 - Relationship between x-ray illumination field size and flat field intensity and its impacts on x-ray imaging

AU - Dong, Xue

AU - Niu, Tianye

AU - Jia, Xun

AU - Zhu, Lei

PY - 2012/10

Y1 - 2012/10

N2 - Purpose: X-ray cone-beam CT (CBCT) is being increasingly used for various clinical applications, while its performance is still hindered by image artifacts. This work investigates a new source of reconstruction error, which is often overlooked in the current CBCT imaging. The authors find that the x-ray flat field intensity (I0) varies significantly as the illumination volume size changes at different collimator settings. A wrong I0 value leads to inaccurate CT numbers of reconstructed images as well as wrong scatter measurements in the CBCT research. Methods: The authors argue that the finite size of x-ray focal spot together with the detector glare effect cause the I0 variation at different illumination sizes. Although the focal spot of commercial x-ray tubes typically has a nominal size of less than 1 mm, the off-focal-spot radiation covers an area of several millimeters on the tungsten target. Due to the large magnification factor from the field collimator to the detector, the penumbra effects of the collimator blades result in different I0 values for different illumination field sizes. Detector glare further increases the variation, since one pencil beam of incident x-ray is scattered into an area of several centimeters on the detector. In this paper, the authors study these two effects by measuring the focal spot distribution with a pinhole assembly and the detector point spread function (PSF) with an edge-spread function method. The authors then derive a formula to estimate the I0 value for different illumination field sizes, using the measured focal spot distribution and the detector PSF. Phantom studies are carried out to investigate the accuracy of scatter measurements and CT images with and without considering the I0 variation effects. Results: On our tabletop system with a Varian Paxscan 4030CB flat-panel detector and a Varian RAD-94 x-ray tube as used on a clinical CBCT system, the focal spot distribution has a measured full-width-at-half-maximum (FWHM) of around 0.4 mm, while non-negligible off-focal-spot radiation is observed at a distance of over 2 mm from the center. The measured detector PSF has an FWHM of 0.510 mm, with a shape close to Gaussian. From these two distributions, the author calculate the estimated I0 values at different collimator settings. The I 0 variation mainly comes from the focal spot effect. The estimation matches well with the measurements at different collimator widths in both horizontal and vertical directions, with an average error of less than 3. Our method improves the accuracy of conventional scatter measurements, where the scatter is measured as the difference between fan-beam and cone-beam projections. On a uniform water cylinder phantom, more accurate I0 suppresses the unfaithful high-frequency signals at the object boundaries of the measured scatter, and the SPR estimation error is reduced from 0.158 to 0.014. The proposed I0 estimation also reduces the reconstruction error from about 20 HU on the Catphan

AB - Purpose: X-ray cone-beam CT (CBCT) is being increasingly used for various clinical applications, while its performance is still hindered by image artifacts. This work investigates a new source of reconstruction error, which is often overlooked in the current CBCT imaging. The authors find that the x-ray flat field intensity (I0) varies significantly as the illumination volume size changes at different collimator settings. A wrong I0 value leads to inaccurate CT numbers of reconstructed images as well as wrong scatter measurements in the CBCT research. Methods: The authors argue that the finite size of x-ray focal spot together with the detector glare effect cause the I0 variation at different illumination sizes. Although the focal spot of commercial x-ray tubes typically has a nominal size of less than 1 mm, the off-focal-spot radiation covers an area of several millimeters on the tungsten target. Due to the large magnification factor from the field collimator to the detector, the penumbra effects of the collimator blades result in different I0 values for different illumination field sizes. Detector glare further increases the variation, since one pencil beam of incident x-ray is scattered into an area of several centimeters on the detector. In this paper, the authors study these two effects by measuring the focal spot distribution with a pinhole assembly and the detector point spread function (PSF) with an edge-spread function method. The authors then derive a formula to estimate the I0 value for different illumination field sizes, using the measured focal spot distribution and the detector PSF. Phantom studies are carried out to investigate the accuracy of scatter measurements and CT images with and without considering the I0 variation effects. Results: On our tabletop system with a Varian Paxscan 4030CB flat-panel detector and a Varian RAD-94 x-ray tube as used on a clinical CBCT system, the focal spot distribution has a measured full-width-at-half-maximum (FWHM) of around 0.4 mm, while non-negligible off-focal-spot radiation is observed at a distance of over 2 mm from the center. The measured detector PSF has an FWHM of 0.510 mm, with a shape close to Gaussian. From these two distributions, the author calculate the estimated I0 values at different collimator settings. The I 0 variation mainly comes from the focal spot effect. The estimation matches well with the measurements at different collimator widths in both horizontal and vertical directions, with an average error of less than 3. Our method improves the accuracy of conventional scatter measurements, where the scatter is measured as the difference between fan-beam and cone-beam projections. On a uniform water cylinder phantom, more accurate I0 suppresses the unfaithful high-frequency signals at the object boundaries of the measured scatter, and the SPR estimation error is reduced from 0.158 to 0.014. The proposed I0 estimation also reduces the reconstruction error from about 20 HU on the Catphan

KW - cone-beam CT

KW - flat field intensity

KW - x-ray focal spot

KW - x-ray scatter

UR - http://www.scopus.com/inward/record.url?scp=84867320222&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84867320222&partnerID=8YFLogxK

U2 - 10.1118/1.4750054

DO - 10.1118/1.4750054

M3 - Article

VL - 39

SP - 5901

EP - 5909

JO - Medical Physics

JF - Medical Physics

SN - 0094-2405

IS - 10

ER -