Runx2 trans-activation mediated by the Msx2-interacting nuclear target requires homeodomain interacting protein kinase-3

Oscar L. Sierra, Dwight A. Towler

Research output: Contribution to journalArticle

12 Citations (Scopus)

Abstract

Runt-related transcription factor 2 (Runx2) and muscle segment homeobox homolog 2-interacting nuclear target (MINT) (Spen homolog) are transcriptional regulators critical for mammalian development. MINT enhances Runx2 activation of osteocalcin (OC) fibroblast growth factor (FGF) response element in an FGF2-dependent fashion in C3H10T1/2 cells. Although the MINT N-terminal RNA recognition motif domain contributes, the muscle segment homeobox homolog 2-interacting domain is sufficient for Runx2 activation. Intriguingly, Runx1 cannot replace Runx2 in this assay. To better understand this Runx2 signaling cascade, we performed structure-function analysis of the Runx2-MINT trans-activation relationship. Systematic truncation and domain swapping in Runx1:Runx2 chimeras identified that the unique Runx2 activation domain 3 (AD3), encompassed by residues 316-421, conveys MINT+FGF2 trans-activation in transfection assays. Ala mutagenesis of Runx2 Ser/Thr residues identified that S301 and T326 in AD3 are necessary for full MINT+FGF2 trans-activation. Conversely, phosphomimetic Asp substitution of these AD3 Ser/Thr residues enhanced activation by MINT. Adjacent Pro residues implicated regulation by a proline-directed protein kinase (PDPK). Systematic screening with PDPK inhibitors identified that the casein kinase-2/homeodomain-interacting protein kinase (HIPK)/dual specificity tyrosine phosphorylation regulated kinase inhibitor 2-dimethylamino-4,5,6,7-tetrabromo-1H-benzimidazole (DMAT), but not ERK, c-Jun N-terminal kinase, p38MAPK, or other casein kinase-2 inhibitors, abrogated Runx2-, MINT-, and FGF2-activation. Systematic small interfering RNA-mediated silencing of DMAT-inhibited PDPKs revealed that HIPK3 depletion reduced MINT+FGF2-dependent activation of Runx2. HIPK3 and Runx2 coprecipitate after in vitro transcription-translation, and recombinant HIPK3 recognizes Runx2 AD3 as kinase substrate. Furthermore, DMAT treatment and HIPK3 RNAi inhibited MINT+FGF2 activation of Runx2 AD3, and nuclear HIPK3 colocalized with MINT. HIPK3 antisense oligodeoxynucleotide selectively reduced Runx2 protein accumulation and OC gene expression in C3H10T1/2 cells. Thus, HIPK3 participates in MINT+FGF2 regulation of Runx2 AD3 activity and controls Runx2-dependent OC expression.

Original languageEnglish (US)
Pages (from-to)1478-1497
Number of pages20
JournalMolecular Endocrinology
Volume24
Issue number7
DOIs
StatePublished - Jan 1 2010

Fingerprint

Homeodomain Proteins
Fibroblast Growth Factor 2
Protein Kinases
Proline-Directed Protein Kinases
Osteocalcin
Casein Kinase II
Homeobox Genes
RNA Interference
Core Binding Factor Alpha 1 Subunit
Muscles
Fibroblast Growth Factors
JNK Mitogen-Activated Protein Kinases
Oligodeoxyribonucleotides
Response Elements
Protein Kinase Inhibitors
Viperidae
Mutagenesis
Small Interfering RNA
Transfection
Transcription Factors

ASJC Scopus subject areas

  • Molecular Biology
  • Endocrinology

Cite this

Runx2 trans-activation mediated by the Msx2-interacting nuclear target requires homeodomain interacting protein kinase-3. / Sierra, Oscar L.; Towler, Dwight A.

In: Molecular Endocrinology, Vol. 24, No. 7, 01.01.2010, p. 1478-1497.

Research output: Contribution to journalArticle

@article{3e1f2ff59b0948148e3fa0d6813fe055,
title = "Runx2 trans-activation mediated by the Msx2-interacting nuclear target requires homeodomain interacting protein kinase-3",
abstract = "Runt-related transcription factor 2 (Runx2) and muscle segment homeobox homolog 2-interacting nuclear target (MINT) (Spen homolog) are transcriptional regulators critical for mammalian development. MINT enhances Runx2 activation of osteocalcin (OC) fibroblast growth factor (FGF) response element in an FGF2-dependent fashion in C3H10T1/2 cells. Although the MINT N-terminal RNA recognition motif domain contributes, the muscle segment homeobox homolog 2-interacting domain is sufficient for Runx2 activation. Intriguingly, Runx1 cannot replace Runx2 in this assay. To better understand this Runx2 signaling cascade, we performed structure-function analysis of the Runx2-MINT trans-activation relationship. Systematic truncation and domain swapping in Runx1:Runx2 chimeras identified that the unique Runx2 activation domain 3 (AD3), encompassed by residues 316-421, conveys MINT+FGF2 trans-activation in transfection assays. Ala mutagenesis of Runx2 Ser/Thr residues identified that S301 and T326 in AD3 are necessary for full MINT+FGF2 trans-activation. Conversely, phosphomimetic Asp substitution of these AD3 Ser/Thr residues enhanced activation by MINT. Adjacent Pro residues implicated regulation by a proline-directed protein kinase (PDPK). Systematic screening with PDPK inhibitors identified that the casein kinase-2/homeodomain-interacting protein kinase (HIPK)/dual specificity tyrosine phosphorylation regulated kinase inhibitor 2-dimethylamino-4,5,6,7-tetrabromo-1H-benzimidazole (DMAT), but not ERK, c-Jun N-terminal kinase, p38MAPK, or other casein kinase-2 inhibitors, abrogated Runx2-, MINT-, and FGF2-activation. Systematic small interfering RNA-mediated silencing of DMAT-inhibited PDPKs revealed that HIPK3 depletion reduced MINT+FGF2-dependent activation of Runx2. HIPK3 and Runx2 coprecipitate after in vitro transcription-translation, and recombinant HIPK3 recognizes Runx2 AD3 as kinase substrate. Furthermore, DMAT treatment and HIPK3 RNAi inhibited MINT+FGF2 activation of Runx2 AD3, and nuclear HIPK3 colocalized with MINT. HIPK3 antisense oligodeoxynucleotide selectively reduced Runx2 protein accumulation and OC gene expression in C3H10T1/2 cells. Thus, HIPK3 participates in MINT+FGF2 regulation of Runx2 AD3 activity and controls Runx2-dependent OC expression.",
author = "Sierra, {Oscar L.} and Towler, {Dwight A.}",
year = "2010",
month = "1",
day = "1",
doi = "10.1210/me.2010-0029",
language = "English (US)",
volume = "24",
pages = "1478--1497",
journal = "Molecular Endocrinology",
issn = "0888-8809",
publisher = "The Endocrine Society",
number = "7",

}

TY - JOUR

T1 - Runx2 trans-activation mediated by the Msx2-interacting nuclear target requires homeodomain interacting protein kinase-3

AU - Sierra, Oscar L.

AU - Towler, Dwight A.

PY - 2010/1/1

Y1 - 2010/1/1

N2 - Runt-related transcription factor 2 (Runx2) and muscle segment homeobox homolog 2-interacting nuclear target (MINT) (Spen homolog) are transcriptional regulators critical for mammalian development. MINT enhances Runx2 activation of osteocalcin (OC) fibroblast growth factor (FGF) response element in an FGF2-dependent fashion in C3H10T1/2 cells. Although the MINT N-terminal RNA recognition motif domain contributes, the muscle segment homeobox homolog 2-interacting domain is sufficient for Runx2 activation. Intriguingly, Runx1 cannot replace Runx2 in this assay. To better understand this Runx2 signaling cascade, we performed structure-function analysis of the Runx2-MINT trans-activation relationship. Systematic truncation and domain swapping in Runx1:Runx2 chimeras identified that the unique Runx2 activation domain 3 (AD3), encompassed by residues 316-421, conveys MINT+FGF2 trans-activation in transfection assays. Ala mutagenesis of Runx2 Ser/Thr residues identified that S301 and T326 in AD3 are necessary for full MINT+FGF2 trans-activation. Conversely, phosphomimetic Asp substitution of these AD3 Ser/Thr residues enhanced activation by MINT. Adjacent Pro residues implicated regulation by a proline-directed protein kinase (PDPK). Systematic screening with PDPK inhibitors identified that the casein kinase-2/homeodomain-interacting protein kinase (HIPK)/dual specificity tyrosine phosphorylation regulated kinase inhibitor 2-dimethylamino-4,5,6,7-tetrabromo-1H-benzimidazole (DMAT), but not ERK, c-Jun N-terminal kinase, p38MAPK, or other casein kinase-2 inhibitors, abrogated Runx2-, MINT-, and FGF2-activation. Systematic small interfering RNA-mediated silencing of DMAT-inhibited PDPKs revealed that HIPK3 depletion reduced MINT+FGF2-dependent activation of Runx2. HIPK3 and Runx2 coprecipitate after in vitro transcription-translation, and recombinant HIPK3 recognizes Runx2 AD3 as kinase substrate. Furthermore, DMAT treatment and HIPK3 RNAi inhibited MINT+FGF2 activation of Runx2 AD3, and nuclear HIPK3 colocalized with MINT. HIPK3 antisense oligodeoxynucleotide selectively reduced Runx2 protein accumulation and OC gene expression in C3H10T1/2 cells. Thus, HIPK3 participates in MINT+FGF2 regulation of Runx2 AD3 activity and controls Runx2-dependent OC expression.

AB - Runt-related transcription factor 2 (Runx2) and muscle segment homeobox homolog 2-interacting nuclear target (MINT) (Spen homolog) are transcriptional regulators critical for mammalian development. MINT enhances Runx2 activation of osteocalcin (OC) fibroblast growth factor (FGF) response element in an FGF2-dependent fashion in C3H10T1/2 cells. Although the MINT N-terminal RNA recognition motif domain contributes, the muscle segment homeobox homolog 2-interacting domain is sufficient for Runx2 activation. Intriguingly, Runx1 cannot replace Runx2 in this assay. To better understand this Runx2 signaling cascade, we performed structure-function analysis of the Runx2-MINT trans-activation relationship. Systematic truncation and domain swapping in Runx1:Runx2 chimeras identified that the unique Runx2 activation domain 3 (AD3), encompassed by residues 316-421, conveys MINT+FGF2 trans-activation in transfection assays. Ala mutagenesis of Runx2 Ser/Thr residues identified that S301 and T326 in AD3 are necessary for full MINT+FGF2 trans-activation. Conversely, phosphomimetic Asp substitution of these AD3 Ser/Thr residues enhanced activation by MINT. Adjacent Pro residues implicated regulation by a proline-directed protein kinase (PDPK). Systematic screening with PDPK inhibitors identified that the casein kinase-2/homeodomain-interacting protein kinase (HIPK)/dual specificity tyrosine phosphorylation regulated kinase inhibitor 2-dimethylamino-4,5,6,7-tetrabromo-1H-benzimidazole (DMAT), but not ERK, c-Jun N-terminal kinase, p38MAPK, or other casein kinase-2 inhibitors, abrogated Runx2-, MINT-, and FGF2-activation. Systematic small interfering RNA-mediated silencing of DMAT-inhibited PDPKs revealed that HIPK3 depletion reduced MINT+FGF2-dependent activation of Runx2. HIPK3 and Runx2 coprecipitate after in vitro transcription-translation, and recombinant HIPK3 recognizes Runx2 AD3 as kinase substrate. Furthermore, DMAT treatment and HIPK3 RNAi inhibited MINT+FGF2 activation of Runx2 AD3, and nuclear HIPK3 colocalized with MINT. HIPK3 antisense oligodeoxynucleotide selectively reduced Runx2 protein accumulation and OC gene expression in C3H10T1/2 cells. Thus, HIPK3 participates in MINT+FGF2 regulation of Runx2 AD3 activity and controls Runx2-dependent OC expression.

UR - http://www.scopus.com/inward/record.url?scp=77954827971&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=77954827971&partnerID=8YFLogxK

U2 - 10.1210/me.2010-0029

DO - 10.1210/me.2010-0029

M3 - Article

C2 - 20484411

AN - SCOPUS:77954827971

VL - 24

SP - 1478

EP - 1497

JO - Molecular Endocrinology

JF - Molecular Endocrinology

SN - 0888-8809

IS - 7

ER -