Sema6B, Sema6C, and Sema6D Expression and Function during Mammalian Retinal Development

Ryota L. Matsuoka, Lu O. Sun, Kei ichi Katayama, Yutaka Yoshida, Alex L. Kolodkin

Research output: Contribution to journalArticle

9 Scopus citations

Abstract

In the vertebrate retina, the formation of neural circuits within discrete laminae is critical for the establishment of retinal visual function. Precise formation of retinal circuits requires the coordinated actions of adhesive and repulsive molecules, including repulsive transmembrane semaphorins (Sema6A, Sema5A, and Sema5B). These semaphorins signal through different Plexin A (PlexA) receptors, thereby regulating distinct aspects of retinal circuit assembly. Here, we investigate the physiological roles of three Class 6 transmembrane semaphorins (Sema6B, Sema6C, and Sema6D), previously identified as PlexA receptor ligands in non-retinal tissues, in mammalian retinal development. We performed expression analysis and also phenotypic analyses of mice that carry null mutations in each of genes encoding these proteins using a broad range of inner and outer retinal markers. We find that these Class 6 semaphorins are uniquely expressed throughout postnatal retinal development in specific domains and cell types of the developing retina. However, we do not observe defects in stereotypical lamina-specific neurite stratification of retinal neuron subtypes in Sema6B-/- or Sema6C-/-; Sema6D-/- retinas. These findings indicate these Class 6 transmembrane semaphorins are unlikely to serve as major PlexA receptor ligands for the assembly of murine retinal circuit laminar organization.

Original languageEnglish (US)
Article numbere63207
JournalPloS one
Volume8
Issue number4
DOIs
StatePublished - Apr 30 2013

ASJC Scopus subject areas

  • Biochemistry, Genetics and Molecular Biology(all)
  • Agricultural and Biological Sciences(all)
  • General

Fingerprint Dive into the research topics of 'Sema6B, Sema6C, and Sema6D Expression and Function during Mammalian Retinal Development'. Together they form a unique fingerprint.

  • Cite this