Surface apposition and multiple cell contacts promote myoblast fusion in Drosophila flight muscles

Nagaraju Dhanyasi, Dagan Segal, Eyal Shimoni, Vera Shinder, Ben Zion Shilo, K. VijayRaghavan, Eyal D. Schejter

Research output: Contribution to journalArticlepeer-review

32 Scopus citations

Abstract

Fusion of individual myoblasts to form multinucleated myofibers constitutes a widely conserved program for growth of the somatic musculature. We have used electron microscopy methods to study this key form of cell-cell fusion during development of the indirect flight muscles (IFMs) of Drosophila melanogaster. We find that IFM myoblast-myotube fusion proceeds in a stepwise fashion and is governed by apparent cross talk between transmembrane and cytoskeletal elements. Our analysis suggests that cell adhesion is necessary for bringing myoblasts to within a minimal distance from the myotubes. The branched actin polymerization machinery acts subsequently to promote tight apposition between the surfaces of the two cell types and formation of multiple sites of cell-cell contact, giving rise to nascent fusion pores whose expansion establishes full cytoplasmic continuity. Given the conserved features of IFM myogenesis, this sequence of cell interactions and membrane events and the mechanistic significance of cell adhesion elements and the actin-based cytoskeleton are likely to represent general principles of the myoblast fusion process.

Original languageEnglish (US)
Pages (from-to)191-203
Number of pages13
JournalJournal of Cell Biology
Volume211
Issue number1
DOIs
StatePublished - Oct 12 2015
Externally publishedYes

ASJC Scopus subject areas

  • Cell Biology

Fingerprint

Dive into the research topics of 'Surface apposition and multiple cell contacts promote myoblast fusion in Drosophila flight muscles'. Together they form a unique fingerprint.

Cite this