The genetics of the Dras3-Roughened-ecdysoneless chromosomal region (62B3-4 to 62D3-4) in Drosophila melanogaster: analysis of recessive lethal mutations.

T. J. Sliter, V. C. Henrich, R. L. Tucker, L. I. Gilbert

Research output: Contribution to journalArticle

26 Citations (Scopus)

Abstract

The genetic organization of interval 62B3-4 to 62D3-4 on the Drosophila third chromosome was investigated. The region (designated DRE) includes four known loci: Roughened (R; 3-1.4), defined by a dominant mutation disrupting eye morphology; the nonvital locus Aprt, structural gene for adenine phosphoribosyltransferase; Dras3, a homolog of the vertebrate ras oncogene; and 1(3)ecdysoneless (1(3)ecd), a gene that has been implicated in the regulation of larval molting hormone (ecdysteroid) synthesis. Overlapping chromosomal deletions of the region were generated by gamma-ray-induced reversion of the R mutation. Recessive lethal mutations were isolated based upon failure to complement the recessive lethality of Df(3L)RR2, a deletion of the DRE region that removes 16-18 polytene chromosome bands. A total of 117 mutations were isolated following ethyl methanesulfonate and gamma-ray mutagenesis. These and two additional define 13 lethal complementation groups. Mutations at two loci were recovered at disproportionately high rates. One of these loci is preferentially sensitive to radiation-induced mutational alterations. Additionally, an unusually low recovery rate for cytologically detectable rearrangement breakpoints within the gamma-ray-sensitive locus suggests that an interval of the DRE region closely linked to the R locus may be dominantly sensitive to position effects. Lethal phase analysis of mutant hemizygotes indicates that a high proportion of DRE-region loci (11 of 13) are necessary for larval development. Mutations in five loci cause predominantly first-instar larval lethality, while mutations in four other loci cause predominantly second-instar lethality. Mutations in two loci cause late-larval lethality associated with abnormal imaginal disc development. A temperature-sensitive allele of one newly identified complementation group blocks ecdysteroid-induced pupariation. This developmental block is overcome by dietary 20-hydroxyecdysone, suggesting that a second locus in the region in addition to l(3)ecd may play a role in the regulation of late larval ecdysteroid levels.

Original languageEnglish (US)
Pages (from-to)327-336
Number of pages10
JournalGenetics
Volume123
Issue number2
StatePublished - Oct 1989

Fingerprint

Drosophila melanogaster
Mutation
Ecdysteroids
Gamma Rays
Hemizygote
Adenine Phosphoribosyltransferase
Ecdysterone
Polytene Chromosomes
Ethyl Methanesulfonate
Imaginal Discs
Ecdysone
ras Genes
Mutagenesis
Genes
Drosophila
Vertebrates
Chromosomes
Alleles
Radiation
Temperature

ASJC Scopus subject areas

  • Genetics

Cite this

The genetics of the Dras3-Roughened-ecdysoneless chromosomal region (62B3-4 to 62D3-4) in Drosophila melanogaster : analysis of recessive lethal mutations. / Sliter, T. J.; Henrich, V. C.; Tucker, R. L.; Gilbert, L. I.

In: Genetics, Vol. 123, No. 2, 10.1989, p. 327-336.

Research output: Contribution to journalArticle

@article{14928e6d4df54e63b62c3ab0cf4ada07,
title = "The genetics of the Dras3-Roughened-ecdysoneless chromosomal region (62B3-4 to 62D3-4) in Drosophila melanogaster: analysis of recessive lethal mutations.",
abstract = "The genetic organization of interval 62B3-4 to 62D3-4 on the Drosophila third chromosome was investigated. The region (designated DRE) includes four known loci: Roughened (R; 3-1.4), defined by a dominant mutation disrupting eye morphology; the nonvital locus Aprt, structural gene for adenine phosphoribosyltransferase; Dras3, a homolog of the vertebrate ras oncogene; and 1(3)ecdysoneless (1(3)ecd), a gene that has been implicated in the regulation of larval molting hormone (ecdysteroid) synthesis. Overlapping chromosomal deletions of the region were generated by gamma-ray-induced reversion of the R mutation. Recessive lethal mutations were isolated based upon failure to complement the recessive lethality of Df(3L)RR2, a deletion of the DRE region that removes 16-18 polytene chromosome bands. A total of 117 mutations were isolated following ethyl methanesulfonate and gamma-ray mutagenesis. These and two additional define 13 lethal complementation groups. Mutations at two loci were recovered at disproportionately high rates. One of these loci is preferentially sensitive to radiation-induced mutational alterations. Additionally, an unusually low recovery rate for cytologically detectable rearrangement breakpoints within the gamma-ray-sensitive locus suggests that an interval of the DRE region closely linked to the R locus may be dominantly sensitive to position effects. Lethal phase analysis of mutant hemizygotes indicates that a high proportion of DRE-region loci (11 of 13) are necessary for larval development. Mutations in five loci cause predominantly first-instar larval lethality, while mutations in four other loci cause predominantly second-instar lethality. Mutations in two loci cause late-larval lethality associated with abnormal imaginal disc development. A temperature-sensitive allele of one newly identified complementation group blocks ecdysteroid-induced pupariation. This developmental block is overcome by dietary 20-hydroxyecdysone, suggesting that a second locus in the region in addition to l(3)ecd may play a role in the regulation of late larval ecdysteroid levels.",
author = "Sliter, {T. J.} and Henrich, {V. C.} and Tucker, {R. L.} and Gilbert, {L. I.}",
year = "1989",
month = "10",
language = "English (US)",
volume = "123",
pages = "327--336",
journal = "Genetics",
issn = "0016-6731",
publisher = "Genetics Society of America",
number = "2",

}

TY - JOUR

T1 - The genetics of the Dras3-Roughened-ecdysoneless chromosomal region (62B3-4 to 62D3-4) in Drosophila melanogaster

T2 - analysis of recessive lethal mutations.

AU - Sliter, T. J.

AU - Henrich, V. C.

AU - Tucker, R. L.

AU - Gilbert, L. I.

PY - 1989/10

Y1 - 1989/10

N2 - The genetic organization of interval 62B3-4 to 62D3-4 on the Drosophila third chromosome was investigated. The region (designated DRE) includes four known loci: Roughened (R; 3-1.4), defined by a dominant mutation disrupting eye morphology; the nonvital locus Aprt, structural gene for adenine phosphoribosyltransferase; Dras3, a homolog of the vertebrate ras oncogene; and 1(3)ecdysoneless (1(3)ecd), a gene that has been implicated in the regulation of larval molting hormone (ecdysteroid) synthesis. Overlapping chromosomal deletions of the region were generated by gamma-ray-induced reversion of the R mutation. Recessive lethal mutations were isolated based upon failure to complement the recessive lethality of Df(3L)RR2, a deletion of the DRE region that removes 16-18 polytene chromosome bands. A total of 117 mutations were isolated following ethyl methanesulfonate and gamma-ray mutagenesis. These and two additional define 13 lethal complementation groups. Mutations at two loci were recovered at disproportionately high rates. One of these loci is preferentially sensitive to radiation-induced mutational alterations. Additionally, an unusually low recovery rate for cytologically detectable rearrangement breakpoints within the gamma-ray-sensitive locus suggests that an interval of the DRE region closely linked to the R locus may be dominantly sensitive to position effects. Lethal phase analysis of mutant hemizygotes indicates that a high proportion of DRE-region loci (11 of 13) are necessary for larval development. Mutations in five loci cause predominantly first-instar larval lethality, while mutations in four other loci cause predominantly second-instar lethality. Mutations in two loci cause late-larval lethality associated with abnormal imaginal disc development. A temperature-sensitive allele of one newly identified complementation group blocks ecdysteroid-induced pupariation. This developmental block is overcome by dietary 20-hydroxyecdysone, suggesting that a second locus in the region in addition to l(3)ecd may play a role in the regulation of late larval ecdysteroid levels.

AB - The genetic organization of interval 62B3-4 to 62D3-4 on the Drosophila third chromosome was investigated. The region (designated DRE) includes four known loci: Roughened (R; 3-1.4), defined by a dominant mutation disrupting eye morphology; the nonvital locus Aprt, structural gene for adenine phosphoribosyltransferase; Dras3, a homolog of the vertebrate ras oncogene; and 1(3)ecdysoneless (1(3)ecd), a gene that has been implicated in the regulation of larval molting hormone (ecdysteroid) synthesis. Overlapping chromosomal deletions of the region were generated by gamma-ray-induced reversion of the R mutation. Recessive lethal mutations were isolated based upon failure to complement the recessive lethality of Df(3L)RR2, a deletion of the DRE region that removes 16-18 polytene chromosome bands. A total of 117 mutations were isolated following ethyl methanesulfonate and gamma-ray mutagenesis. These and two additional define 13 lethal complementation groups. Mutations at two loci were recovered at disproportionately high rates. One of these loci is preferentially sensitive to radiation-induced mutational alterations. Additionally, an unusually low recovery rate for cytologically detectable rearrangement breakpoints within the gamma-ray-sensitive locus suggests that an interval of the DRE region closely linked to the R locus may be dominantly sensitive to position effects. Lethal phase analysis of mutant hemizygotes indicates that a high proportion of DRE-region loci (11 of 13) are necessary for larval development. Mutations in five loci cause predominantly first-instar larval lethality, while mutations in four other loci cause predominantly second-instar lethality. Mutations in two loci cause late-larval lethality associated with abnormal imaginal disc development. A temperature-sensitive allele of one newly identified complementation group blocks ecdysteroid-induced pupariation. This developmental block is overcome by dietary 20-hydroxyecdysone, suggesting that a second locus in the region in addition to l(3)ecd may play a role in the regulation of late larval ecdysteroid levels.

UR - http://www.scopus.com/inward/record.url?scp=0024745572&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0024745572&partnerID=8YFLogxK

M3 - Article

C2 - 2511069

AN - SCOPUS:0024745572

VL - 123

SP - 327

EP - 336

JO - Genetics

JF - Genetics

SN - 0016-6731

IS - 2

ER -