Time resolved kinetics of direct G(β1γ2) interactions with the carboxyl terminus of Kir3.4 inward rectifier K+ channel subunits

C. A. Doupnik, C. W. Dessauer, V. Z. Slepak, A. G. Gilman, N. Davidson, H. A. Lester

Research output: Contribution to journalArticle

33 Citations (Scopus)

Abstract

The direct interaction of recombinant G(β1γ2) proteins with the carboxyl terminal domain of a G protein-gated inward rectifier K channel subunit, Kir3.4 (GIRK4), was measured in real time using biosensor chip technology. The carboxyl terminus of Kir3.4 (a.a. 186-419) was expressed in bacteria as a glutathione-S-transferase (GST) fusion protein, GST-Kir3.4ct. GST-Kir3.4ct was immobilized to the surface of a biosensor chip by high affinity binding of the GST domain to a covalently attached anti-GST antibody. The association and dissociation rates of G(β1γ2) dimers with the immobilized Kir3.4ct domain were temporally resolved as a change in refractive index detected by surface plasmon resonance. Specific binding of G(β1γ2), dimers to Kir3.4ct was characterized by a dissociation rate (k(d)) of ~ 0.003 s-1. Association kinetics were dominated by a concentration-independent component (time constant ~ 50 s) which complicates models of binding and may indicate conformational changes during binding of G(β1γ2) to Kir3.4ct. The estimated equilibrium dissociation binding constant (K(D)) was ~ 800 nM. These studies demonstrate that G(β1γ2) dimers interact directly with the Kir3.4 channel subunit, and suggest interesting details in the interaction with the major cytosolic carboxyl terminal domain. The slow G(β1γ2) dissociation rate measured on the sensor chip is similar in magnitude to a slow component of channel deactivation measured electrophysiologically in Xenopus oocytes expressing Kir3.1/3.4 multimeric channels and a G protein-coupled receptor. Biosensor-based experiments such as those described here will complement electrophysiological studies on the molecular basis of G protein interactions with Kir channels and other ion channel proteins.

Original languageEnglish (US)
Pages (from-to)923-931
Number of pages9
JournalNeuropharmacology
Volume35
Issue number7
DOIs
StatePublished - 1996

Fingerprint

Inwardly Rectifying Potassium Channel
Glutathione Transferase
Biosensing Techniques
GTP-Binding Proteins
Refractometry
Surface Plasmon Resonance
Protein S
G-Protein-Coupled Receptors
Xenopus
Ion Channels
Oocytes
Proteins
Technology
Bacteria
Antibodies

Keywords

  • G proteins
  • GST fusion proteins
  • Inwardly rectifying K channels
  • Protein-protein interactions
  • Surface plasmon resonance

ASJC Scopus subject areas

  • Cellular and Molecular Neuroscience
  • Drug Discovery
  • Pharmacology

Cite this

Time resolved kinetics of direct G(β1γ2) interactions with the carboxyl terminus of Kir3.4 inward rectifier K+ channel subunits. / Doupnik, C. A.; Dessauer, C. W.; Slepak, V. Z.; Gilman, A. G.; Davidson, N.; Lester, H. A.

In: Neuropharmacology, Vol. 35, No. 7, 1996, p. 923-931.

Research output: Contribution to journalArticle

Doupnik, C. A. ; Dessauer, C. W. ; Slepak, V. Z. ; Gilman, A. G. ; Davidson, N. ; Lester, H. A. / Time resolved kinetics of direct G(β1γ2) interactions with the carboxyl terminus of Kir3.4 inward rectifier K+ channel subunits. In: Neuropharmacology. 1996 ; Vol. 35, No. 7. pp. 923-931.
@article{700ed380f9024edc9575170ce70ceab8,
title = "Time resolved kinetics of direct G(β1γ2) interactions with the carboxyl terminus of Kir3.4 inward rectifier K+ channel subunits",
abstract = "The direct interaction of recombinant G(β1γ2) proteins with the carboxyl terminal domain of a G protein-gated inward rectifier K channel subunit, Kir3.4 (GIRK4), was measured in real time using biosensor chip technology. The carboxyl terminus of Kir3.4 (a.a. 186-419) was expressed in bacteria as a glutathione-S-transferase (GST) fusion protein, GST-Kir3.4ct. GST-Kir3.4ct was immobilized to the surface of a biosensor chip by high affinity binding of the GST domain to a covalently attached anti-GST antibody. The association and dissociation rates of G(β1γ2) dimers with the immobilized Kir3.4ct domain were temporally resolved as a change in refractive index detected by surface plasmon resonance. Specific binding of G(β1γ2), dimers to Kir3.4ct was characterized by a dissociation rate (k(d)) of ~ 0.003 s-1. Association kinetics were dominated by a concentration-independent component (time constant ~ 50 s) which complicates models of binding and may indicate conformational changes during binding of G(β1γ2) to Kir3.4ct. The estimated equilibrium dissociation binding constant (K(D)) was ~ 800 nM. These studies demonstrate that G(β1γ2) dimers interact directly with the Kir3.4 channel subunit, and suggest interesting details in the interaction with the major cytosolic carboxyl terminal domain. The slow G(β1γ2) dissociation rate measured on the sensor chip is similar in magnitude to a slow component of channel deactivation measured electrophysiologically in Xenopus oocytes expressing Kir3.1/3.4 multimeric channels and a G protein-coupled receptor. Biosensor-based experiments such as those described here will complement electrophysiological studies on the molecular basis of G protein interactions with Kir channels and other ion channel proteins.",
keywords = "G proteins, GST fusion proteins, Inwardly rectifying K channels, Protein-protein interactions, Surface plasmon resonance",
author = "Doupnik, {C. A.} and Dessauer, {C. W.} and Slepak, {V. Z.} and Gilman, {A. G.} and N. Davidson and Lester, {H. A.}",
year = "1996",
doi = "10.1016/0028-3908(96)00125-6",
language = "English (US)",
volume = "35",
pages = "923--931",
journal = "Neuropharmacology",
issn = "0028-3908",
publisher = "Elsevier Limited",
number = "7",

}

TY - JOUR

T1 - Time resolved kinetics of direct G(β1γ2) interactions with the carboxyl terminus of Kir3.4 inward rectifier K+ channel subunits

AU - Doupnik, C. A.

AU - Dessauer, C. W.

AU - Slepak, V. Z.

AU - Gilman, A. G.

AU - Davidson, N.

AU - Lester, H. A.

PY - 1996

Y1 - 1996

N2 - The direct interaction of recombinant G(β1γ2) proteins with the carboxyl terminal domain of a G protein-gated inward rectifier K channel subunit, Kir3.4 (GIRK4), was measured in real time using biosensor chip technology. The carboxyl terminus of Kir3.4 (a.a. 186-419) was expressed in bacteria as a glutathione-S-transferase (GST) fusion protein, GST-Kir3.4ct. GST-Kir3.4ct was immobilized to the surface of a biosensor chip by high affinity binding of the GST domain to a covalently attached anti-GST antibody. The association and dissociation rates of G(β1γ2) dimers with the immobilized Kir3.4ct domain were temporally resolved as a change in refractive index detected by surface plasmon resonance. Specific binding of G(β1γ2), dimers to Kir3.4ct was characterized by a dissociation rate (k(d)) of ~ 0.003 s-1. Association kinetics were dominated by a concentration-independent component (time constant ~ 50 s) which complicates models of binding and may indicate conformational changes during binding of G(β1γ2) to Kir3.4ct. The estimated equilibrium dissociation binding constant (K(D)) was ~ 800 nM. These studies demonstrate that G(β1γ2) dimers interact directly with the Kir3.4 channel subunit, and suggest interesting details in the interaction with the major cytosolic carboxyl terminal domain. The slow G(β1γ2) dissociation rate measured on the sensor chip is similar in magnitude to a slow component of channel deactivation measured electrophysiologically in Xenopus oocytes expressing Kir3.1/3.4 multimeric channels and a G protein-coupled receptor. Biosensor-based experiments such as those described here will complement electrophysiological studies on the molecular basis of G protein interactions with Kir channels and other ion channel proteins.

AB - The direct interaction of recombinant G(β1γ2) proteins with the carboxyl terminal domain of a G protein-gated inward rectifier K channel subunit, Kir3.4 (GIRK4), was measured in real time using biosensor chip technology. The carboxyl terminus of Kir3.4 (a.a. 186-419) was expressed in bacteria as a glutathione-S-transferase (GST) fusion protein, GST-Kir3.4ct. GST-Kir3.4ct was immobilized to the surface of a biosensor chip by high affinity binding of the GST domain to a covalently attached anti-GST antibody. The association and dissociation rates of G(β1γ2) dimers with the immobilized Kir3.4ct domain were temporally resolved as a change in refractive index detected by surface plasmon resonance. Specific binding of G(β1γ2), dimers to Kir3.4ct was characterized by a dissociation rate (k(d)) of ~ 0.003 s-1. Association kinetics were dominated by a concentration-independent component (time constant ~ 50 s) which complicates models of binding and may indicate conformational changes during binding of G(β1γ2) to Kir3.4ct. The estimated equilibrium dissociation binding constant (K(D)) was ~ 800 nM. These studies demonstrate that G(β1γ2) dimers interact directly with the Kir3.4 channel subunit, and suggest interesting details in the interaction with the major cytosolic carboxyl terminal domain. The slow G(β1γ2) dissociation rate measured on the sensor chip is similar in magnitude to a slow component of channel deactivation measured electrophysiologically in Xenopus oocytes expressing Kir3.1/3.4 multimeric channels and a G protein-coupled receptor. Biosensor-based experiments such as those described here will complement electrophysiological studies on the molecular basis of G protein interactions with Kir channels and other ion channel proteins.

KW - G proteins

KW - GST fusion proteins

KW - Inwardly rectifying K channels

KW - Protein-protein interactions

KW - Surface plasmon resonance

UR - http://www.scopus.com/inward/record.url?scp=0345017560&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0345017560&partnerID=8YFLogxK

U2 - 10.1016/0028-3908(96)00125-6

DO - 10.1016/0028-3908(96)00125-6

M3 - Article

VL - 35

SP - 923

EP - 931

JO - Neuropharmacology

JF - Neuropharmacology

SN - 0028-3908

IS - 7

ER -