Upregulation of antibody response to heat shock proteins and tissue antigens in an ocular ischemia model

Stephanie C. Joachim, Martin B. Wax, Nils Boehm, Desiree R. Dirk, Norbert Pfeiffer, Franz H. Grus

Research output: Contribution to journalArticlepeer-review

21 Scopus citations

Abstract

Purpose. The aim of this study was to characterize the serum antibody reactivities occurring after ocular ischemia reperfusion. The time course of serum antibody responses was examined. Methods. Wistar rats were exposed to transient ocular ischemia by elevating intraocular pressure to 130 mm Hg for 60 minutes. Axonal damage was evaluated on optic-nerve sections 2 and 4 weeks later. Blood samples collected before and several times after ischemia were used for antibody detection via customized protein microarrays. Different tissue antigens, including heat shock proteins (HSPs) and crystallins, were selected based on previous identification of antibody reactivities in studies on ischemic events or ophthalmic diseases associated with ischemia. Antibody reactivity was compared using multivariate statistical techniques. Results. Significant axonal damage was observed 2 and 4 weeks after ocular ischemia (P < 0.05). Animals showed certain immunoreactivities against antigens even before ischemia, whereas many reactivities increased afterward. Significantly different responses were detected 2, 3, and 4 weeks after ischemia (P < 0.05). Antibody reactivity against actin, glial fibrillary acidic protein, HSP 27, vimentin, or spectrin continually increased. Conclusions. Ischemia induced by acute intraocular pressure elevation led to complex changes in antibody reactivities in sera of treated animals. Upregulation of serum autoantibodies, especially against heat shock and structural proteins, progressively increased throughout the 4-week follow-up period, whereas others such as ubiquitin decreased. The upregulation of anti-HSP 27 antibodies might be an attempt to protect the tissue from ischemic damage.

Original languageEnglish (US)
Pages (from-to)3468-3474
Number of pages7
JournalInvestigative Ophthalmology and Visual Science
Volume52
Issue number6
DOIs
StatePublished - May 2011

ASJC Scopus subject areas

  • Ophthalmology
  • Sensory Systems
  • Cellular and Molecular Neuroscience

Fingerprint

Dive into the research topics of 'Upregulation of antibody response to heat shock proteins and tissue antigens in an ocular ischemia model'. Together they form a unique fingerprint.

Cite this